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A theoretical model of a nonlinear hyperbolic metamaterial is presented in the form of a stack of subwavelength
layers of linear plasmonic and nonlinear dielectric materials. A broad picture of the properties of evanescent
waves (high-k modes) in this stack is investigated by plotting global transmission diagrams. The presence of
nonlinearity strongly modifies these diagrams. The emergence and modification of nonlinear evanescent waves
is observed. Some signatures of nonlinear phenomenon such as formation of orbits and trajectories around fixed
points are also seen in our work.
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It has been strongly suggested that the future of photon-
ics, plasmonics, and signal processing is related to the field
of subwavelength optics[1–5]. Much theoretical and experi-
mental research is being carried out to convert subwave-
length evanescent waves into propagating modes[6–10].
One solution has come with the theoretical understanding
and practical realization of hyperbolic metamaterials
(HMMs). Metamaterials are artificially fabricated assem-
blies of subwavelength repeating units having unusual
properties such as negative refraction, invisibility,
super-lensing, and so on[11–17]. Metamaterials with hyper-
bolic dispersion is one of the most unusual classes
of electromagnetic metamaterials. This hyperbolic
dispersion originates from one of the principal components
of the effective electric permittivity tensor of an aniso-
tropic material having opposite sign to the other two prin-
cipal components[18–21]. These HMMs can be practically
realized in the form of a stack consisting of subwavelength
alternate plasmonic and dielectric layers or a periodic ar-
rangement of metallic nanowires in a dielectric host[22–27].
The greatest advantage of HMMs is the fact that they
offer a multi-functional domain to realize novel electro-
magnetic devices at microwave, infrared, and optical
frequencies. Due to the presence of hyperbolic dispersion
it is possible to convert a portion of the evanescent waves
into propagating waves even at optical frequencies. Such
propagating modes have been termed high-k modes and
their origin is coupled surface plasmon polaritons[28–32].
The characteristics of these coupled surface plasmon po-
laritons (sometimes called volume plasmon polaritons)
have been studied extensively in linear HMMs. Optical ef-
fects can be strongly enhanced with nonlinear plasmonic
metamaterials as highly localized fields are obtained in
such structures. Certain recent studies have explored
the potential of nonlinear HMMs. These include the non-
linear interaction of meta-atoms through optical coupling,

intensity dependent transmission, all-optical modulation,
the enhancement of the nonlinear optical response of
metamaterials by using nonlocality, and so on[33–40]. In a
very recent study, various phase-matching processes in
nonlinear HMMs were systematically investigated[41].

In our work, we investigated the transmission charac-
teristics of evanescent waves in a nonlinear HMM. We
considered a stack consisting of subwavelength alternate
linear plasmonic and nonlinear dielectric layers. The di-
electric layers are assumed to exhibit Kerr-type third-or-
der weak nonlinear coefficients. The nonlinearity is
induced by the incident radiation at the frequencies of in-
terest. The transmission characteristics are studied by
plotting the global transmission diagrams. The terminol-
ogy is borrowed from the work by Li et al.[42,43]. They
studied the transmission characteristics of nonlinear
photonic band gap structures for propagating waves by
plotting density plots of the transmission coefficient in
the intensity versus the wave vector plane. These are
termed global transmission diagrams as a very broad pic-
ture of the transmission characteristics can be seen in
such diagrams. They used the delta function approach
for calculations by taking one of the layers to be very
thin as compared to the other layer of the structure
[42,43]. A discrete nonlinear map was obtained and they
were able to identify different periodic behaviors and
the existence of fractal-like structures in the transmission
diagrams. Here we are using the transfer matrix
approach[44,45] which is a more exact method as compared
to the delta function approach. We have used two types
of diagrams for nonlinear wave propagation. The density
plots of log10 T (where T is transmission coefficient)
are plotted in the wave vector versus intensity plane at
a given frequency and the same plots are obtained in
the frequency versus intensity plane for a given wave
vector.
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We model our theoretical work by considering a peri-
odic stack consisting of alternate layers of a dispersive
metal and a Kerr nonlinear dielectric material. The elec-
tric permittivity εm of the metal layer of width dm is given

by the Drude model, i.e., εm ¼ ε∞ −
ω2
p

ω2þiγω , where ωp and γ

are the plasma frequency and the damping coefficient of
the metal, respectively. For the dielectric layer of thick-
ness dd , the electric permittivity εd is taken to as
εd ¼ εl þ αjEj2, where εl is the linear refractive index, α
is the Kerr nonlinear coefficient, and jEj2 is the intensity
of the incident radiation. For our computational/numeri-
cal work, we have considered a Ag∕TiO2 structure with 20
alternate layers with a filling factor f ¼ 0.5 (the filling
factor of the structure is defined as f ¼ dm

dmþdd
); values

considered are

ε∞ ¼ 5; ωp∕2π ¼ 2175 THz; γ∕2π ¼ 4.35 THz;

εl ¼ 6.15; dd ¼ dm ¼ 20 nm; α¼ 9.4× 10−15 cm2W−1:

(1)

Since the Kerr nonlinearity is a weak nonlinearity, the ef-
fective medium approximation (EMA), i.e., kd;mdd;m ≪ 1,
(kd;m ¼ εd;mk0, k0 is the free-space wave vector), still holds
for the nonlinear structure. Using EMA, the periodic
structure [Fig. 1(a)] can be represented by a uniaxial
crystal (optical axis parallel to the z-axis in the present
geometry) with a relative permittivity tensor defined as
(εx;y ¼ ε⊥, εz ¼ εjj)

¯̄ε ¼

0
B@
ε⊥ 0 0

0 ε⊥ 0

0 0 ε∥

1
CA; ε⊥ ¼ εddd þ εmdm

dd þ dm
;

εjj ¼
�
ε−1
d dd þ ε−1

m dm
dd þ dm

�−1
. (2)

The propagation of the transverse magnetic (TM) mode
with the following dispersion relation under the conditions
of EMA is considered

k2x þ k2y
εjj

þ k2z
ε⊥

¼ ω2

c2
: (3)

Equation (3) represents a hyperbola under the condi-
tion ε⊥εjj < 0. The validity of the EMA has been studied
extensively in many recent studies[29,32] and an excellent
agreement with exact calculations (based on the Bloch
theorem) for small k values is observed, but it deviates
somewhat for high-k values. Since here we are concerned
with the high-k modes (the evanescent waves), instead of
using the EMA, the transmission coefficient of the
structure is computed by using the transfer matrix
approach[44,45]. In this approach the tangential components
of the electric and magnetic fields across a layer are related
through the matrix equation

�
E
H

�
z
¼

� cos kjdj −
εj
kj

sin kjdj
kj
εj

sin kjdj cos kjdj

��
E
H

�
zþdj

; (4)

where kj ¼
�������������������
εjw − k2x

q
.

For the nonlinear wave propagation, the permittivity
essentially depends on the electric field intensity inside
the layer that may vary significantly if the layer thickness
is greater than the wavelength of the incident radiation.
Here, the layer thickness is assumed to be subwavelength,
so local fields are almost uniform inside the nonlinear layer
and their average value is safely taken to compute the non-
linear permittivity of the dielectric layer.

For the computational work, the frequencies, wave
vectors, and field intensities are used in dimensionless
units, as follows

w ¼ ωd
c

; κ ¼ kd; I ¼ αjEj2. (5)

Initially we have plotted effective parameters for the linear
case, i.e., taking α to be zero in Figs. 1(b) and 1(c). The
Type II behavior (ε⊥ < 0, εjj > 0) lies in the frequency w <
0.8 (dimensionless units) and the Type I (ε⊥ > 0, εjj < 0)
lies in the frequency region w > 0.8. For the filling factor
of 0.5, there is no frequency gap between Type I and Type
II HMMs. Dispersion curves in these regions are shown in
Fig. 2. It is obvious that in a Type I metamaterial, only
high-k modes exist whereas in a Type II metamaterial high
as well as low k modes are present.

Fig. 1. (a) Schematic diagram; plots of (b) εx;y; and (c) εz versus w.
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Figure 3 shows the linear case for a Type II HMM. It is a
density plot of the tranmission coefficient in log10 T scale
for the transverse wavevector k ¼ kx∕k0 versus frequency
w. Here we have considered the evanescent waves, i.e.,
k > 1. The black regions correspond to infinitesimal small
value of log10 T and indicate no transmission regions
whereas the apprearance of white regions correspond to
finite values of log10 T and indicate transmitting modes.
In Fig. 3, the bright band corresponding to characteristc

surface plasmon polariton dispersion[23] and high-k trans-
mission modes[29,32] can be clearly seen. The interesting
thing is that most of Fig. 3 is black, indicating no trans-
mission region for linear wave propagation.

Now we analyze different portions of the graphs for non-
linear wave propagations. Figure 4(a) is the isofrequency
(w ¼ 0.6) density plot of the transmission coefficient in
log10 T scale for nonlinear wave propagation; the horizon-
tal axis shows the transverse wave vector (k > 1, i.e.,
evanescent waves) whereas the verticle axis shows the
dimensionless intensity of the incident wave.

It is obvious that the transmission properties are
strongly modulated by the presence of nonlinearity. The
appearance of transmission modes and formation of
periodic patterns can be seen in the Figs. 4(a)–4(c). In
Figs. 4(b) and 4(c) certain portions of Fig. 4(a) are shown
in magnified scale. Figure 4(b) particularly shows the ap-
pearance of self-similar (fractal-like) paterns. It is also easy
to identify the presence of an unstable fixed point (saddle)
from where the nearby stable trajectories (white regions)
are diverging hyperbolically. In Fig. 4(c) it is obvious that
high-k modes are finely separated from one another on the
intensity scale. Such a kind of fine separation can be used
for modeling fine filters of evanescent waves. Here it shoud
be noted that the emergence of new transmission features
is a sole effect of nonlinearity induced by the incident
radiation since the structure under consideration is inves-
tigated beyond the Fabry–Perot resonance condition[30,31]

(i.e., the total length of the structure being integral multi-
ple of half wavelengths inside the layers). If this condition
holds, both linear and nonlinear transmission diagrams
will be affected in the same manner.

Next in Figs. 5(a)–5(c) the density plots of the transmis-
sion coefficient in log10 T in the frequency versus intensity
plane at a given wavevector (k ¼ 3) for a Type II HMM
are shown. The emergence of propagating modes (white
regions) is again seen in these diagrames in the otherwise
(linear) nonpropagating region. Each of Figs. 5(b) and
5(c) is blown up on the horizontal scale (frequency) as well
as on the verticle scale (intensity) scale as compared to
Fig. 5(a); again the formation of periodic and self-similiar
structures within structures is obvious. The existence of

Fig. 2. (a) Plot of kx versus kz for a Type II HMM at w ¼ 0.1;
(b) same plot for a Type I HMM at w ¼ 1.2.

Fig. 3. Global transmission diagram of a Type II HMM.

Fig. 4. (a) Global transmission diagram for k versus I at w ¼ 0.6; (b) and (c) magnified portions of (a).
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central (elliptic) type fixed points is obvious in Fig. 5. The
stable trajecories (white regions) are orbitting round these
fixed points in closed paths. Figure 5(c) shows fine sepa-
ration of transmitting modes on the frequency axis; the
phenomenon can be expoloited for fine tuning of frquen-
cies for evanescent waves.
In the Type I HMM, two components of the permittiv-

ity tensor (εx ¼ εx ¼ ε⊥ > 0) are positive and one compo-
nent (εz ¼ εjj < 0) is negative. Figure 6 shows the

frequency versus wave vector plot of log10 T for the evan-
escent waves for linear wave propagation. The appearance
of transmission modes for low and high k values is obvious
in Fig. 6. These transmitting bands are separated from
each other by nontransmitting regions. Again we focus
on the nonlinear wave propagation. Figures 7(a)–7(c) are
density plots of log10 T at a constant frequency (w ¼ 1.2)
in the wave vector (k) versus intensity (I ) planes. Differ-
ent regions of Fig. 7(a) are magnified in Fig. 7(b) and 7(c);
an emergence of patterns within patterns and fine separa-
tion of modes is again obvious in Fig. 7. The appearance of
unstable fixed points (saddle) and divergence of stable tra-
jectories in a hyperbolic manner is pictured in Fig. 7(b).
Figure 7(c) shows the fine separation of high-k modes.

Figures 8(a)–8(c) are density plots of log10 T in the
wave vector versus intensity planes at a constant wave
vector (k ¼ 3). The same phenomenon of the appearance
of self-similar fractal-like structures and fine separation of
transmitting modes is also observed in Fig. 8.

The appearance of nonlinear high-k modes in both
Type I and Type II HMMs is manifested with the help of
diagrams. The presence of different periodic orbits and
trajectories indicate the transmitting regions of these
evanescent waves. Two types of behaviors are observed
in both Type I and Type II HMMs. The appearance of
saddle-like unstable fixed points and stable white trans-
mitting trajectories are seen in the wave vector versus

Fig. 5. (a) Global transmission diagram for w versus I at k ¼ 3; (b) and (c) magnified portions of (a).

Fig. 6. Global transmission diagram of a Type I HMM.

Fig. 7. (a) Plot of I versus k at w ¼ 1.2 for a Type II HMM; (b) and (c) magnification of different portions of (a).
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intensity plots at a fixed frequency. The frequency versus
intensity plots at a given wave vector show the appearance
of neutral central (elliptic) fixed points and white trans-
mitting orbits around them. The magnification of these
diagrams shows fine separation of these modes on the fre-
quency versus intensity scale for a given wave vector and
wave vector versus intensity scale for a given frequency. It
is suggested that the properties of these nonlinear high-k
modes can be further explored by explicitly deriving the
equations of different periodic orbits and trajectories.
The dependence on certain parameters such as the filling
factor of the structure can also be investigated in an-
other study.

References
1. M. Kauranen and A. V. Zayats, Nat. Photon. 6, 737 (2012).
2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep.

408, 13 (2005).
3. S. I. Maslovski, Opt. Commun. 285, 3363 (2012).
4. R.Grimberg,A.Savin, andR.Steigmann,NDT&EInt.46, 70 (2012).
5. Y. Ben-Aryeh, Appl. Phys. B 91, 157 (2008).
6. M. Memarian and G. V. Eleftheriades, IEEE Trans. Microw. Theory

Technol. 60, 3893 (2012).
7. O. Malyuskin and V. Fusco, IEEE Trans. Antennas Propag. 58, 459

(2010).
8. P. A. Belov and Y. Hao, Phys. Rev. B 73, 113110 (2006).
9. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, Nat.

Mater. 11, 30 (2011).
10. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
11. J. P. Pendry, D. Schuring, andD. R. Smith, Science 312, 1780 (2006).
12. W. Cai and V. Halaev,Optical Metamaterials:Fundamentals and Ap-

plications (Springer, 2009).
13. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788

(2004).
14. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
15. M. Zhong, Chin. Opt. Lett. 12, 041601 (2014).
16. Y. Feng and Y. Liu, Chin. Opt. Lett. 13, S12401 (2015).
17. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, Opt. Express

21, 15048 (2013).
18. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948

(2013).
19. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt. 14,

063001 (2012).
20. C. Guclu, S. Campione, and F. Capolino, Phys. Rev. B 86, 205130

(2012).

21. S. A. Biehs, M. Tschikin, and P. Ben–Abdallah, Phys. Rev. Lett.
109, 104301 (2012).

22. Y. Chen, Y. Fang, S. Huang, X. Yan, and J. Shi, Chin. Opt. Lett. 11,
061602 (2013).

23. P.Shekhar,J.Atkinson,andZ. Jacob,NanoConvergence1, 14 (2014).
24. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, Phys. Rev. A 84,

023807 (2011).
25. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090

(2011).
26. D. Lu and Z. Liu, Nat. Commun. 3, 1205 (2012).
27. J. Kanungo and J. Schilling, Appl. Phys. Lett. 97, 021903 (2010).
28. W. Dickson, G. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R.

Pollard, and A. V. Zayats, Phys. Rev. B 76, 115411 (2007).
29. J. Schilling, Phys. Rev. E 74, 046618 (2006).
30. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R.

Simovski, S. Tretyakov, Y. Hao, and C. Parini, Phys. Rev. B 77,
193108 (2008).

31. C. Lv,W. Li, X. Jiang, and J. Cao, Europhys. Lett.105, 28003 (2014).
32. S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, Opt. Express 21, 14982

(2013).
33. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alu, Opt.

Express 21, 15037 (2013).
34. C. Argyropoulos, F. Monticone, N. M. Estakhri, and A. Alu, Int. J.

Antennas Propag. 2014, 532634 (2014).
35. W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108

(2012).
36. A. Madani, S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, and Y.

Ma, Prog. Electromagn. Res. 143, 545 (2013).
37. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J.

Gosztola, V. A. Podolskiy, and A. V. Zayats, Nat. Nanotechnol.
6, 107 (2011).

38. G. Neira, G. Wurtz, P. Ginzburg, and A. Zayatz, Opt. Express 22,
10987 (2014).

39. A. P. Slobozhanyuk, P. V. Kapitanova, D. S. Filonov, D. A. Powell,
I. V. Shadrivov, M. Lapine, P. A. Belov, R. C. McPhedran, and Yu.
S. Kivshar, Appl. Phys. Lett. 104, 014104 (2014).

40. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Rev. Mod. Phys. 86,
1093 (2014).

41. C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and
C. M. de Sterke, Sci. Rep. 5, 8983 (2015).

42. E. Lidorikis, Q. Li, and C. M. Soukoulis, Phys. Rev. B 54, 10249
(1996).

43. Q. Li, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B 53,
15577 (1996).

44. C. C. Katsidis and D. I. Siapkas, App. Opt. 41, 3978 (2002).
45. J. Li, Z. Li, and D. Zhang, Phys. Rev. E 75, 056606 (2007).

Fig. 8. (a) Plot of I versus w at k ¼ 3 for a Type II HMM; (b) and (c) magnification of different portions of (a).

COL 13(9), 090601(2015) CHINESE OPTICS LETTERS September 10, 2015

090601-5


